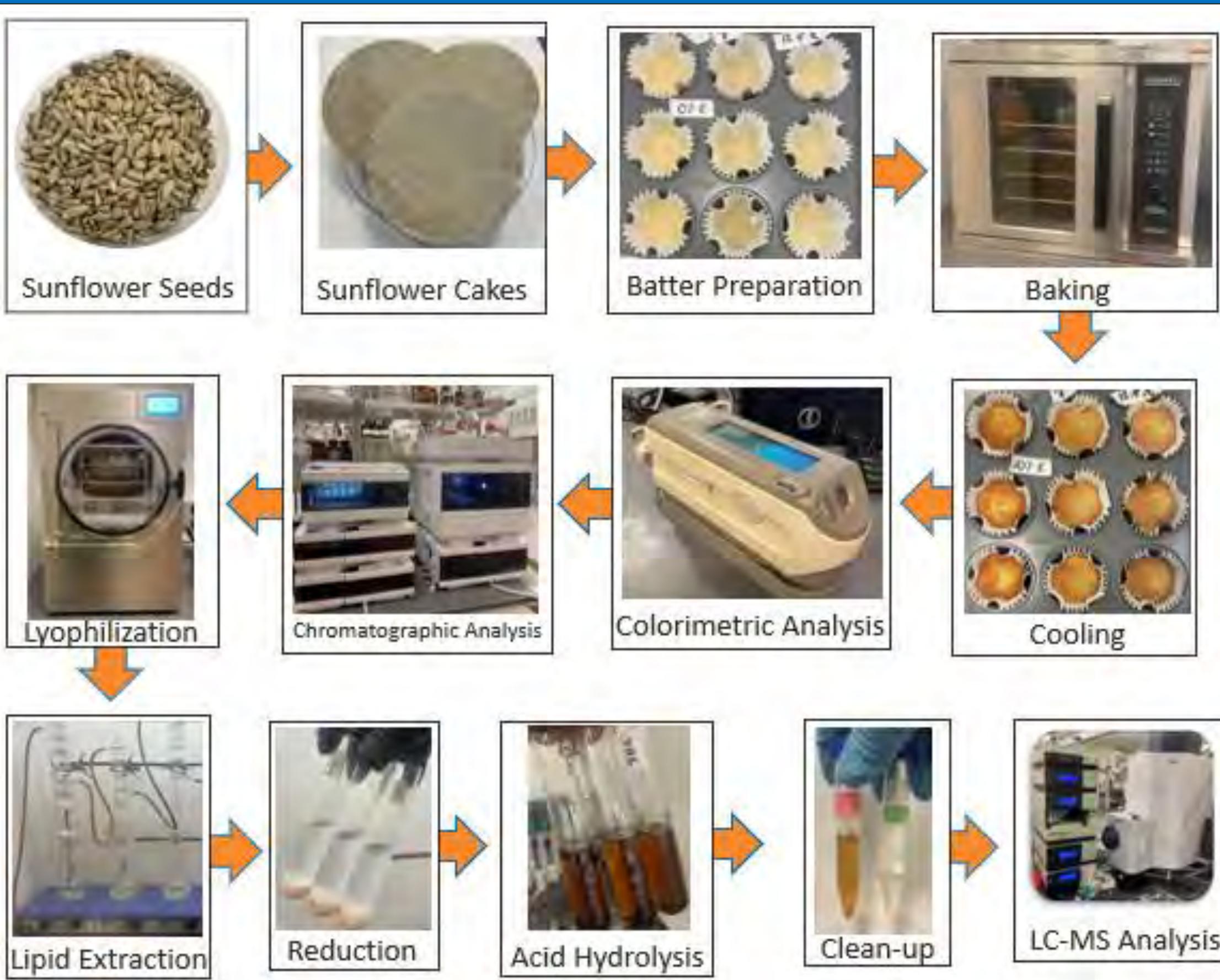

Unveiling the Role of Chlorogenic Acid Esterase in Modulating Browning Index and Inhibition of Non-Fluorescent AGEs through Caffeic Acid Formation in Sunflower Muffins

Contact Me!

Alexander Gomez, Diba Soheili, Lilian Senger, Ph.D.
Department of Food Science, Chapman University

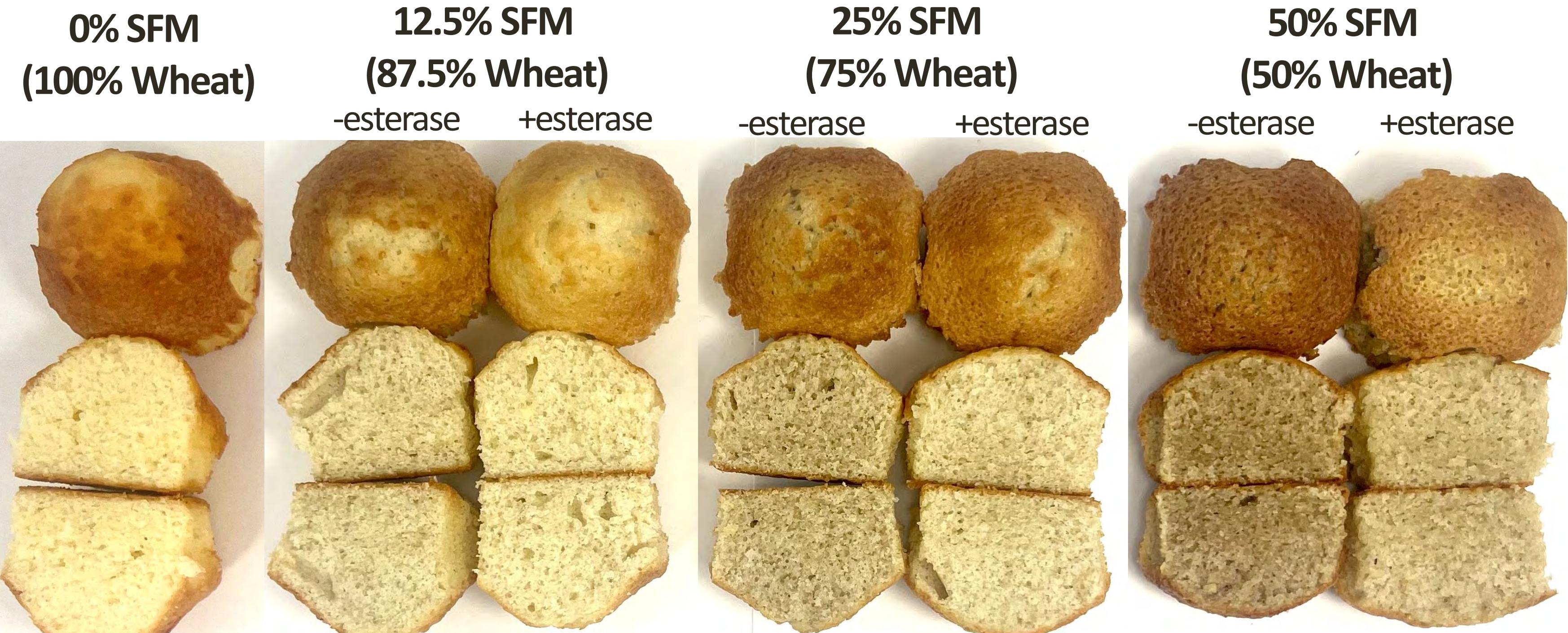
Introduction

- Sunflower meal (SFM) is a by-product of the sunflower oil industry traditionally used as animal feed that is rich in protein, fiber, essential amino acids, phenolic compounds, and minerals¹.
- The predominant antioxidant phenolic compound is chlorogenic acid (CGA)².
- Chlorogenic acid esterase (CGA esterase), cleaves CGA into caffeic acid (CA) and quinic acid and can influence the up-cycling of SFM in commercial applications³.
- CGA can influence both color and formation of advanced glycation end products (AGEs)⁴.


Sunflower Meal Wheat Flour

Proximates (per 100g) ⁵	
Protein (g)	20.78
Carbohydrates (g)	20.0
Lipid (g)	51.46
Allergen potential	Non-Allergenic
Cost (\$/ton) ^{6,7}	160
Wheat Flour	9.89
0.97	
74.22	
Allergenic	
368	

Goal and Objectives


- Upcycling sunflower oil byproduct (SFM) using CGA esterase by
 1. Creating a more visually appealing muffin
 2. Creating a more nutritious muffin by lowering non-fluorescent AGEs

Workflow

Browning Index and Hydroxycinnamic Acids (HCAs)

Table 1: Lightness and browning index (BI) of muffins as a function of Chlorogenic acid (CGA) esterase and % SFM.

Lightness (Hunter L*) Over Time (hrs)

	0.5	3	6	0.5	3	6
84.69±1.35	75.83±1.05	79.34±0.60	71.51±1.07	75.47±6.13	56.45±1.81	69.47±3.16
84.58±1.75	74.15±0.59	78.52±0.70	67.32±3.82	74.38±0.83	59.73±1.73	73.60±2.38
84.05±0.47	76.0±1.19	77.14±1.60	70.63±0.40	73.34±0.44	58.59±3.42	68.72±2.28

Browning Index

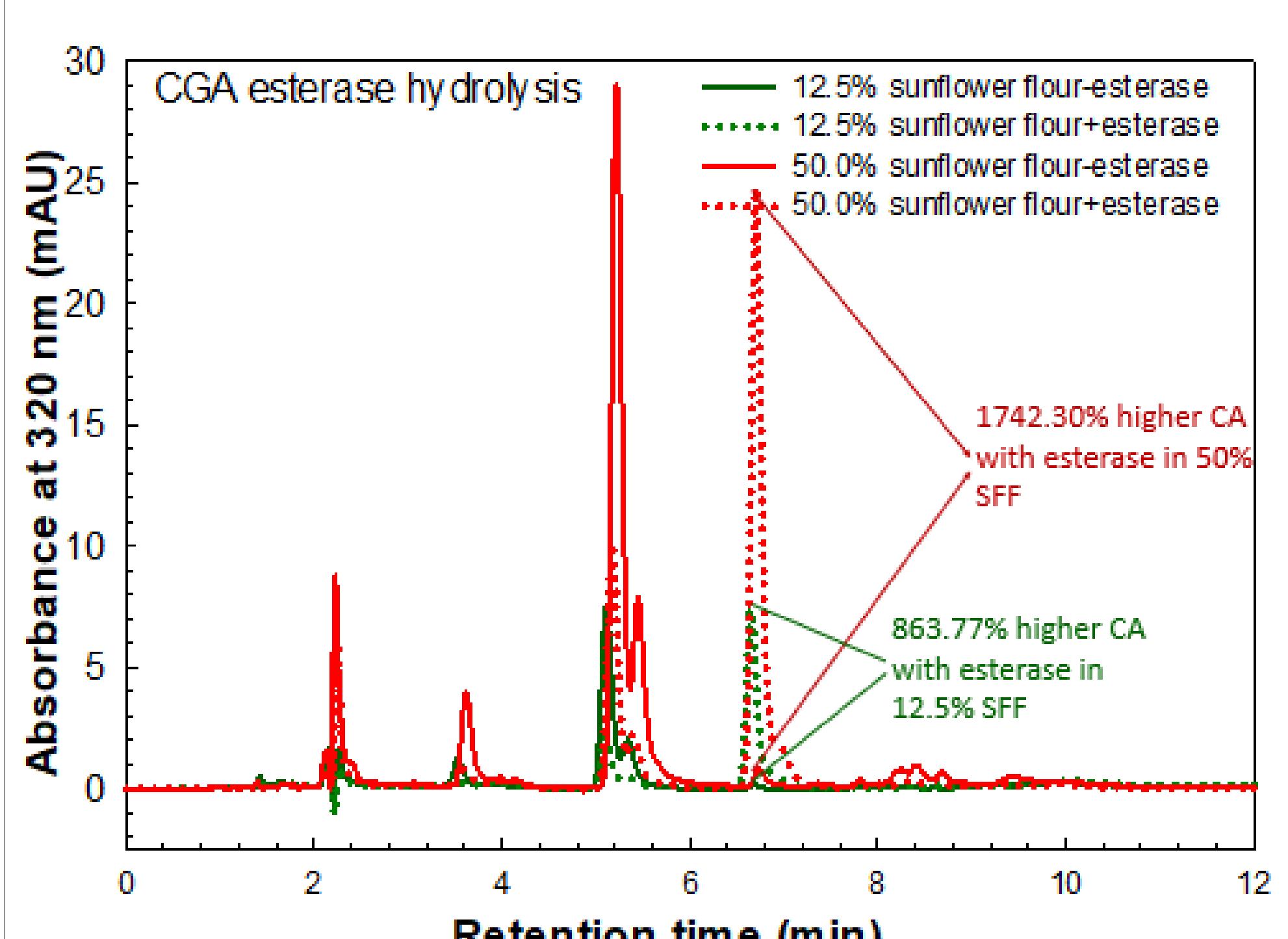
	0.5	3	6	0.5	3	6
28.55±3.16	37.20±4.50	31.20±0.07	39.14±4.17	33.17±9.75	62.40±0.30	41.09±0.41
28.82±0.93	39.04±2.28	32.55±0.77	41.91±3.86	33.071±2.72	57.11±1.54	35.20±2.77
28.78±2.71	33.37±2.07	32.54±4.41	40.63±0.57	37.53±0.21	55.98±0.32	42.23±0.20

Hydroxycinnamic Acids (µg/mL)

	CGA	CA	CGA	CA	CGA	CA
5.03±0.60	20.16±3.09	8.65±0.84	33.60±5.30	11.44±2.57	70.61±1.75	27.61±0.37
1.26±0.48	1.27±0.08	12.27±0.11	1.48±0.11	17.23±4.30	2.14±0.08	39.40±1.72

▲ Represents an increase in Hunter L*, BI, and HCA concentration while ▼ represents a decrease as a function of %SFM and CGA esterase.

Key Findings


Table 2: Pearson Correlation coefficients between % SFM, protein, phenolic acids with browning index.

	Caffeic	CGA	BI
% SFM (-esterase)	0.994	0.997	0.965
% SFM (+esterase)	0.987	0.981	0.990
BI (-esterase)	0.988	0.982	
BI (+esterase)	0.999	0.999	
Soluble Protein	0.246	0.916	0.942

■ Browning was highly correlated with % SFM which had higher caffeic acid and CGA content

■ Soluble protein was highly correlated with CGA but not caffeic acid (Table 2)

Figure 1: Chromatogram of muffin samples containing 12.5% and 50% SFM (n=2). Control samples (—) did not contain the CGA esterase enzyme while (···) contained CGA esterase.

CGA esterase increased CML values in 50% SFM

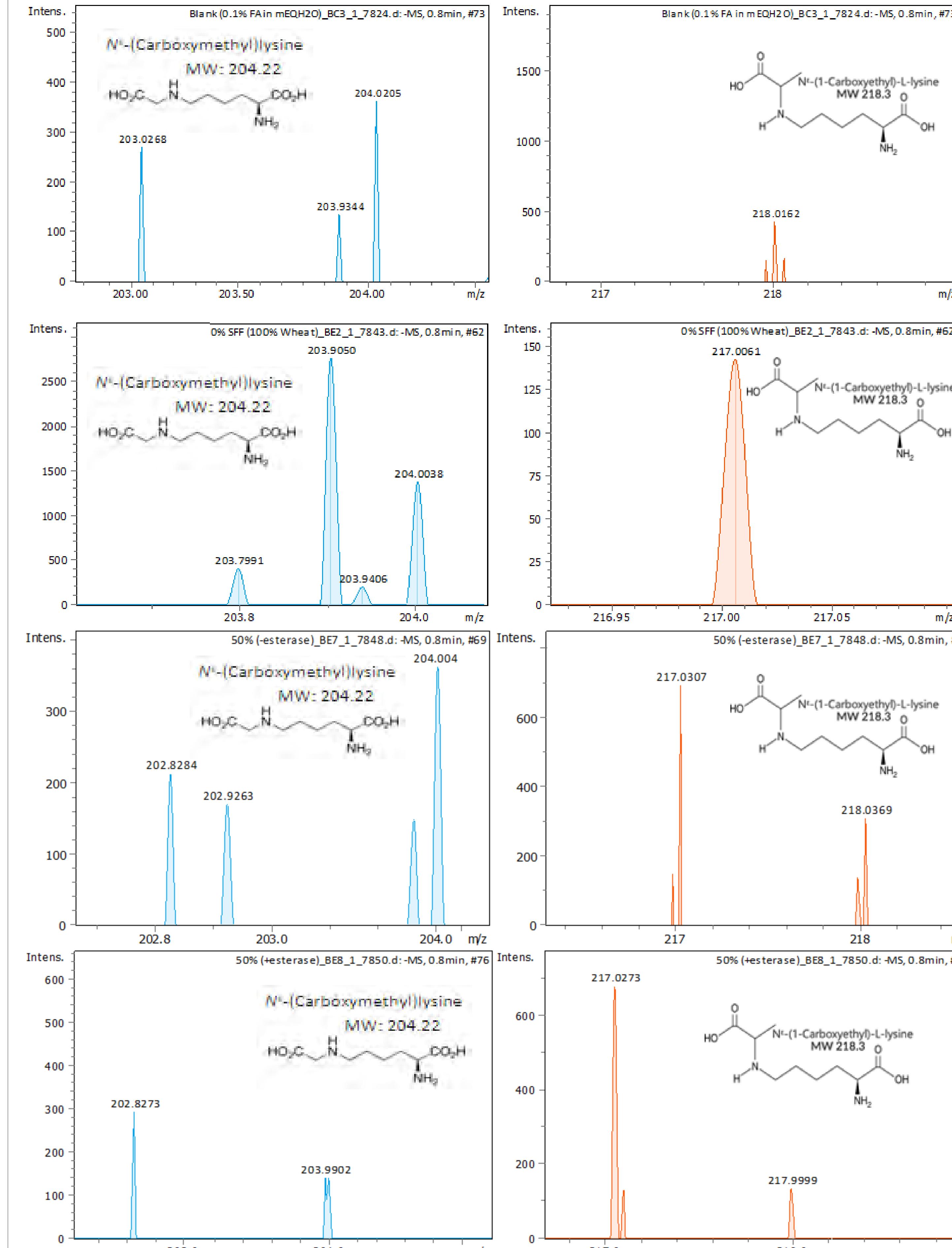


Figure 2: Extracted ion chromatograms (EIC) of samples containing 100% wheat flour and 50% SFM with and without CGA esterase. Samples in **left column** represent N^{ϵ} -(Carboxymethyl)lysine (CML) and **right column** represent N^{ϵ} -(Carboxyethyl)lysine (CEL).

Conclusion

- Chlorogenic acid esterase decreased the browning index in all treatments of muffins
- Modifying the LC-MS method gradient may allow CML and CEL to elute later and limit possible ionization from any salts present in samples

References

- Yegorov B, Turpurova T, Sharabava E, Bondar Y. Prospects of using by-products of sunflower oil production in compound feed industry. *J Food Sci Technol Ukr*. 2019;13:106–113. doi:10.15673/1stv13i137.
- Josmar Gonçalves Filho, Mariana Burando Ega, (2021). Sunflower seed byproduct and its fractions for food application: An attempt to improve the sustainability of the oil process. *Journal of Food Science, doi:10.1111/1750-3841.15719*.
- Nana Baah Peprah-Ameyaw, Christine Lo Verde, Charles T. Drucker, Cedric P. Owens, Lilian W. Senger. Preventing chlorogenic acid quinone-induced greening in sunflower cookies by chlorogenic acid esterase and thiol-based dough conditioners. *LWT*. Volume 174, 2023, 114392. ISSN 0023-6438. <https://doi.org/10.1016/j.lwt.2022.114392>.
- Urbani J, Woodruff S, Goodman S, Cai W, Chen Y, Pyk R, Yong A, Straker GE, Vlassara H. Advanced glycation end products in foods and a practical guide to their reduction in the diet. *J Am Diet Assoc*. 2010 Jun;110(6):911-916.e2. doi:10.1016/j.jada.2010.03.018. PMID: 20497781; PMCID: PMC3704564.
- <https://foodstruct.com/compare/sunflower-seed-vs-wheatflour-white-all-purpose-self-rising-enriched>
- https://www.ams.usda.gov/mnreports/ams_3511.pdf
- <https://www.indexmundi.com/commodities/?commodity=wheat&months=60>

Acknowledgments

- The National Science Foundation: Grant #: **NSF-EAR #2150540**
- Cedric Owens, Ph.D. and Owens Lab for providing the CGA esterase for this research.
- Nana Baah Peprah-Ameyaw, Ph.D. Mr. Alton Chambers IV, Miss Charlene Pok, and Mr. Basir Syed for all their knowledge, guidance, and support throughout this research.

Alternate Text

Alexander Gomez

Chapman University

'Unveiling the Role of Chlorogenic Acid Esterase in Modulating Browning Index and Inhibition of Non-Fluorescent AGEs through Caffeic Acid Formation in Sunflower Muffins'

Introduction:

- Sunflower meal (**SFM**) is a by-product of the sunflower oil industry traditionally used as animal feed that is rich in protein, fiber, essential amino acids, phenolic compounds, and minerals¹.
- The predominant antioxidant phenolic compound is chlorogenic acid (**CGA**)².
- Chlorogenic acid esterase (**CGA esterase**), cleaves CGA into caffeic acid (**CA**) and quinic acid and can influence the up-cycling of SFM in commercial applications³.
- CGA can influence both color and formation of advanced glycation end products (**AGEs**)⁴.

Visual aids titled: 'Chlorogenic Acid', '+ esterase' 'caffeic acid' 'quinic acid', 'sunflower meal', and 'wheat flour'.

Goal and Objectives:

Upcycling sunflower oil byproduct (SFM) using CGA esterase by

1. Creating a more visually appealing muffin
2. Creating a more nutritious muffin by lowering non-fluorescent AGEs

Workflow:

Sunflower Seeds---Sunflower Cakes---Batter Preparation---Baking---Cooling---Colorimetric Analysis---Chromatographic Analysis---Lyophilization---Liquid Extraction---Reduction---Acid Hydrolysis---Clean-up---LC-MS Analysis.

Browning Index and Hydroxycinnamic Acids (HCAs):

Table 1: Lightness and browning index (BI) of muffins as a function of Chlorogenic acid (CGA) esterase and % SFM.

Key Findings:

- CGA esterase increased CA by 864% in 12.5% SFM and 1742% in 50.0% SFM (Figure 1)

Figure 1: Chromatogram of muffin samples containing 12.5% and 50% SFM (n=2). Control samples () did not contain the CGA esterase enzyme while () contained CGA esterase.

Table 2: Pearson Correlation coefficients between % SFM, protein, phenolic acids with browning index.

- Browning was highly correlated with % SFM which had higher caffeic acid and CGA content
- Soluble protein was highly correlated with CGA but not caffeic acid (Table 2)

CGA esterase increased CML values in 50% SFM

*Figure 2: Extracted ion chromatograms (EIC) of samples containing 100% wheat flour and 50% SFM with and without CGA esterase. Samples in **left column** represent Nε-(Carboxymethyl)lysine (**CML**) and **right column** represent Nε-(Carboxyethyl)lysine (**CEL**)*

Conclusion:

- Chlorogenic acid esterase decreased the browning index in all treatments of muffins

- Modifying the LC-MS method gradient may allow CML and CEL to elute later and limit possible ionization from any salts present in samples

References:

1. Yegorov B., TurpurovaT., SharabaevaE., Bondar Y. Prospects of using by-products of sunflower oil production in compound feed industry. *J. Food Sci. Technol. Ukr.* 2019;13:106–113. doi:10.15673/fst.v13i1.1337.
2. JosemarGonçalves Filho, Mariana BuraneloEgea, (2021). *Sunflower seed byproduct and its fractions for food application: An attempt to improve the sustainability of the oil process*. *Journal of Food Science*, doi:10.1111/1750-3841.15719
3. Nana BaahPepra-Ameyaw, Christine Lo Verde, Charles T. Drucker, Cedric P. Owens, Lilian W. Senger. Preventing chlorogenic acid quinone-induced greening in sunflower cookies by chlorogenic acid esterase and thiol-based dough conditioners, *LWT*, Volume 174, 2023, 114392, ISSN 0023-6438, <https://doi.org/10.1016/j.lwt.2022.114392>.
4. UribarriJ, Woodruff S, Goodman S, Cai W, Chen X, PyzikR, Yong A, Striker GE, VlassaraH. Advanced glycation end products in foods and a practical guide to their reduction in the diet. *J Am Diet Assoc.* 2010
5. <https://foodstruct.com/compare/sunflower-seed-vs-wheatflour-white-all-purpose-self-rising-enriched>
6. https://www.ams.usda.gov/mnreports/ams_3511.pdf
7. <https://www.indexmundi.com/commodities/?commodity=wheat&months=60>

Acknowledgements:

The National Science Foundation: Grant #: **NSF-EAR #2150540**

Cedric Owens, Ph.D. and Owens Lab for providing the CGA esterase for this research.

Nana BaahPepra-Ameyaw, Ph.D. Mr. Alton Chambers IV, Miss Charlene Pok, and Mr. Basir Syed for all their knowledge, guidance, and support throughout this research.